Leisiungsversidirker

Toie Typenreihe monolithisch integrierter Analogschaltungen für die Unterhaltungs-Elektronik wurde durch einem 4 W-NF-Leistungsverstärker von SGS erweitert. Das neue Hauelement mit der Bezeichnung TAA 621 eignet sich für stabilisierte und nicht stabilisierte Betriebsspannungen von 9—24 V und wird im 14-poligen Plastic-Leistungs-SPLIT-Dual-in-line-Gehäuse mit Kühlfahne geliefert (Bild 1).

Einsatzmöglichkeiten findet diese IS als NF-Leistungsverstärker mit bis zu 4 W Ausgangsleistung in Rundfunk-, Phono- und speziell Fernsehgeräten sowie in Funksprechgeräten und industriellen Tonband- und Diktiergeräten.

Der TAA 621 (Bild 2) becht im wesentlichen aus
nem Verstärker, einem Netzwerk zur Mittenspannungsausregelung, einer Treiberstufe
und einer quasikomplementären AB-Endstufe mit einer
Gesamtverstärkung von V_u =
74 dB (open loop).

Der Vorverstärker, eine PNP-Darlington-Stufe, besteht aus dem vertikalen PNP T₁ mit einer hohen StromverstärDieser Wert wird durch das Regelnetzwerk der Transistoren T_2 bis T_B folgendermaßen eingestellt und konstant gehalten.

Durch den Widerstand R4 und damit durch T4 fließt der

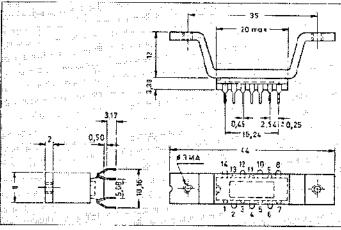


Bild 1: Gehäuseausführung des TAA 621

Tabelle 1

Typische Daten des TAA 621	U ₈	= 12 V = 8 3	18 V 16 Ω	24 V 16 Ω
Stromaufnahnie I _{B Polic} w	m A	5,2	6,4	7,8
Eingangsstrom I	n.A	130	230	340
Runestrom der Endstufe Spannungsverstärkung V _o	m.A.	2,9	3,2	3,9
for po = 50 m/y f = 1 kHz				
R, = 300 ohm	dB	34	34	34
Rauschspannung U,				
am Eingang				
Bandbreite = 8 kHz R _G = 20 kΩ	μV	6,5	7,5	8,5
Kliergrad K P = 50 mW	•/•	1,0	0,67	0,07
Ausgangsleistung Po bel Begren-				
zungseinsatz	W	1.1	1.4	2.5
Ausgangsleistung P _o K≈ 10% .	w	1.4	2.3	4
Betriebsspanungsunterdrückung				
f - 100 Hz				
C _c = 100 µF	dB	54	54	54
$C_{\star} = 50 \ \mu F$	₫₿	44	44	44
stromauinahme I, P, max,				
K = 10%	mA	200	175	230
Lingangsspannung U bei				
Begrenzungseinsatz	mV	170	270	360

kung und dem lateralen PNP T₁, dessen Kollektor zur Erreichung einer großen Spannungsverstärkung auf der Konstantstromquelle T₁ mit nohem differentiellen Widerstand arbeitet. Durch diese Wahl der Eingangsschaltung ist es möglich, den Lingang direkt — ohne Gleichspannungstrennung durch einen Elektroly:-Kondensator — mit einer Wechselspannung um 0 V ohne Gleichspannungsanteil anzusteuern.

Die Darlington-Schaltung gewährleistet einen sehr niedrigen Eingangsstrom und einen hohen Eingangswiderstand. Die Ausgangsstufe des TAA 621 fordert, um einen geringen Klirrgrad durch eine symmetrische Aussteuerung zu erreichen, eine Mittenspannung von

$$V_A = \frac{U_B}{2} - \frac{U_{BE}}{2}$$

(siehe Bild 3)

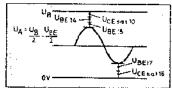


Bild J: Ausgangsspannungshub mit beidseiter Begrenzung

Tabelle i

Betriel sspannung TAA 661 UB = 12 V TAA 621 UB = 24 V Lastwiderstand Alsgangsleistung K = 10% f = 1 kHz R = 18 M Klirrgrad bei B = 15 kHz f = 1 kHz P = 1,4 W: Stromaufnahme TAA 661 TAA 621 P = 0W TAB 621 P = 0W TAB Begrenzungseinsatz (5,5 MHz) UB = 12 V UB = 12 V UB = 12 V UB = 12 V E = 16 Ω Alsgangsleistung LB = 18 mA TAB 621 P = 0W UB = 40 μ V	Daten des FS-Ton- Teiles nach Bild 5	
Stromaufnahme TAA 661 I _B = 18 mA TAA 621 P _o = OW I _B = 8 mA -3 dB Begrenzungs-	TAA 661 TAA 631 Lastwiderstand Ausgangsleistung K = 10% f = 1 kHz Klirgrad bei B =	$U_{B} - 24 V$ $R_{i} = 16 \Omega$
TAA 621 Po = OW IB = 8 mA —3 dB Begrenzungs-	•	K - 0,8*/*
—3 dB Begrenzungs-	TAA 661	$I_B = 18 \text{ mA}$
	—3 dB Begrenzungs-	"

Referenzstrom

$$I_{R} = \frac{U_{B-1}(U_{BE8} + U_{BE6} + U_{BE7} + U_{BE7} + U_{BE8})}{R_{3} + R_{4}}$$

Mit R3>R4 wird

$$I_R = \frac{U_\theta - 5 U_{\theta E}}{R_2}$$

T4 stabilisiert über T4 die Basisspannung von der Konstantstromquelle T3, d. h.

$$\frac{\tilde{I}_3}{I_R} = \frac{R_4}{R_6}$$

Durch $R_6 = 2 R_4$ und $I_2 = I_3$ ist $I_2 = I_{R/2}$

Da die Eingangsgleichspannung ≈ 0 V ist, wird die Emitterspannung von T_2 auf

 $U_{t2} = U_{BE2} + U_{BE1} = 2 U_{BE}$ kenstant gehalten. Hieraus ergibt sich eine Einstellung der Mittenspannung über die Verstärkung von T_2 und T_9 auf

 $V_A = 2 U_{BE} + I_2 R_F$

Uber $I_2 = I_R/2$ und $R_F = R_3$ wird V_A auf $V_A = \frac{U_B}{2} - \frac{U_{BE}}{2}$

entsprechend der Forderung eingangs-ausgeregelt und konstant gehalten.

Die Treiberstufe T9 arbeitet kollektorseitig auf einer Konstantstromquelle T₁₀, um durch deren hohen differentiellen Widerstand eine große Spannungsverstärkung zu erreichen, Die als Dioden geschalteten Transistoren T_{11} und T_{12} fixieren die Kollektor-Emitter-Spannung von T_{13} auf $V_{CE}=3$ Use und stellen damit den Arbeitspunkt und den Ruhestrom der quasikomplementären AB-Endstufe ein, die aus dem Darlington NPN T₁₄ und T₁₅ und dem "Darlington Compound PNP" T₁₆ und T₁₇ besteht. Für T_{12} wurde ein lateraler PNP gewählt, um die Drift der Uge-Spannung des PNP-Treiber-Transistors T16 zu kompensieren. Diese Art der Schaltung gewährleistet einen niedrigen Ruhestrom der Endstufe in dem gesamten Betriebsspannungs- und Temperaturbereich.

Die typischen Daten des TAA 621 sind in Tabelle 1 aufgezeichnet. Die mögliche Ausgangsleistung als Funktion der Betriebsspannung mit einem Lastwiderstand von $R_L=8\,\Omega$ und $R_L=16\,\Omega$ für K=10% ist aus Bild 4 zu entnehmen.

Das Schaltbild der typischen Anwendung als 4 W-NF-Verstärker in FS-Geräten in Verbindung mit dem FS-Ton-ZF-IS-TAA 661 B zum kompletten FS-Tonteil zeigt Bild 5. Die Daten dieser Schaltung sind aus Tabelle 2 zu entnehmen, der Klirrgrad ist in Bild 8 dargestellt. Besonders erwähnenswert ist, daß der TAA 621 durch sein Konzept an einer

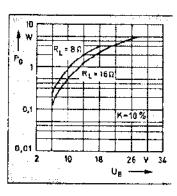
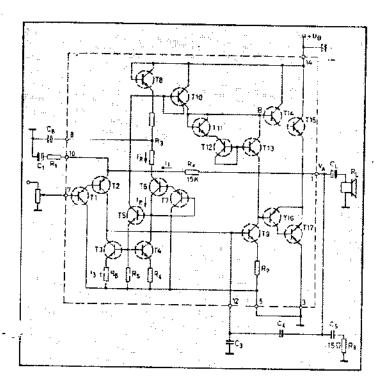



Bild 4: Ausgangsteistung als Funktion der Betriebsspannung U_B mit $R_L=8~\Omega$ und 16 Ω als Parameter für $K=10^6/\epsilon$

nichtstabilisierton Spannung betrieben werden kann, da wie Bild 8 zeigt, die Unterdrückung von Betriebsspannungsschwankungen im ungünstigsten Falle bei 100 Hz und 50 μ F (Elko) 8 mV/V \triangleq 44,9 dB beträgt. Die offene Verstärkung des Elements beträgt 74 dB. Mit dem externen Widerstand R1 (Bild 2) kann nach

$$V_u \approx 1 + \frac{R_f}{R_1}$$

die geforderte Spannungsverstärkung eingestellt werden.

Auch ist die Einstellung des geforderten Frequenzganges durch ein entsprechendes (fixes

Bild 2: Schaltbild des TAA 621 mit externer Beschaltung

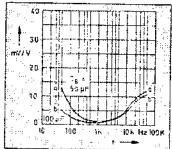


Bild 6: Betriebsspannungsänderungsunterdrückung als Funktion der Frequenz

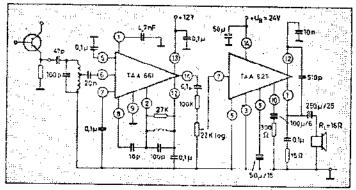


Bild 5: Schaltbild eines Fernsehtonteils mit dem TAA 661/B in der ZF und dem TAA 621 als 4 W-NY-Verstärker

oder variables) Netzwork, welches zwischen dem Ausgang Punkt 1 und dem Eingang der Treiberstufe (Punkt 12) geschaltet wird, möglich. Ein Belspiel ist hierfür in Bild 7 angegeben.

Zusammenfassend kann gesagt werden, daß der TAA 621 durch die hohe Ausgangsleistung den Betrieb an einer nichtstabilisierten Spannung, die Hochohmigkeit des Einganges sowie die Pusgezeichnete Spannungs- und Temperaturkompensation vielseitige Einsatzmöglichkeiten bietet. (3)

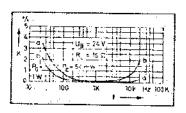
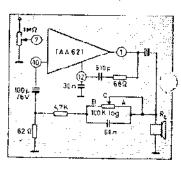



Bild 8: Klirrgrad als Funktion der Frequenz (nach Bild 6)

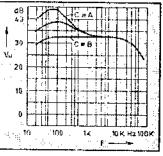


Bild 7: Regelbarkeit der Frequenzganges

 \bigcirc